

DATA SHEET

Product Name Complete Pb-Free Thick Film Chip Resistors

Part Name PF Series

Uniroyal Electronics Global Co., Ltd.

88 Longteng Road, Economic & Technical Development Zone, Kunshan, Jiangsu, China

Tel +86 512 5763 1411 / 22 /33

Email marketing@uni-royal.cn

Manufacture Plant Uniroyal Electronics Industry (kunshan) co., ltd.

Uniroyal Electronics Industry Co., Ltd.

Uniroyal Electronics Global Co.,Ltd Shenzhen Branch

Aeon Technology Corporation

Uniroyal Electronics Global Co.,Ltd Xiamen Branch

Kunshan Foss Electronic material Co., Ltd.

Brands RoyalOhm UniOhm

- 1.1 This specification for approve relates to the Complete Pb-Free Thick Film Chip Resistors manufactured by UNI-ROYAL
- 1.2 Total Lead-Free in Whole resistor body
- 1.3 Reduction of assembly costs and matching with placement machine
- 1.4 Suitable for both wave & re-flow soldering

2. Explanation of Part No. System

Part No. includes 14 codes shown as below:

2.1 1st~4th codes: Part name. E.g.: PF0A, PF01, PF02, PF03, PF05, PF06, PF07, PF11, PF10, PF12

2.2 5th~6th codes: Power rating.

E.g.: W=Normal S	ıze	"l~	G" = "1~1	6"						
Wattage	1/32	3/4	1/2	1/3	1/4	1/8	1/10	1/16	1/20	1
Normal Size	WH	07	W2	W3	W4	W8	WA	WG	WM	1W

If power rating is lower or equal than 1 watt, 5th code would be "W" and 6th code would be a number or letter.

E.g.: WA=1/10W

W4=1/4W

2.3 7th code: Tolerance. E.g.: $D=\pm0.5\%$ $F=\pm1\%$

G=±2%

J=±5%

 $K = \pm 10\%$

2.4 8th~11th codes: Resistance Value.

2.4.1 If value belongs to standard value of ≥5% series, 8th code would be zero,9th~10th codes are significant figures of the resistance and 11th code is the power of ten.

2.4.2 If value belongs to standard value of ≤2% series, 8th~10th codes are significant figures of the resistance, and 11th code is the power of ten.

 $5=10^{5}$

2.4.3 11th codes listed as following:

 $0 = 10^{0}$

 $1=10^{1}$

 $2 = 10^{2}$ $3=10^3$ $4=10^4$

 $6 = 10^6$

 $J=10^{-1}$

K=10⁻² L=10⁻³ M=10⁻⁴

 $2.5 \ 12^{th} \sim 14^{th}$ codes.

2.5.1 12th code: Packaging Type. E.g.: C=Bulk

T=Tape/Reel

2.5.2 13th code: Standard Packing Quantity.

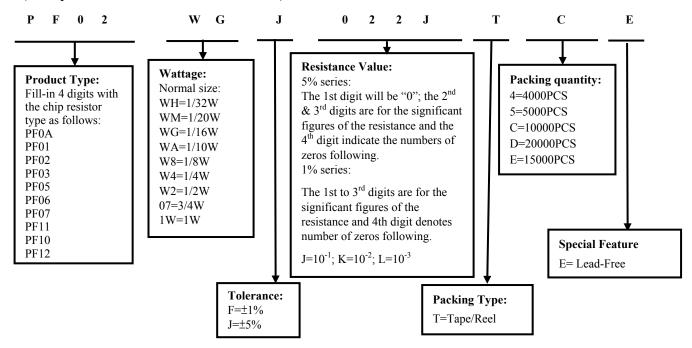
5=5000pcs 4=4000pcs

C=10000pcs

D=20000pcs

E=15000pcs

Chip Product: BD=B/B-20000pcs


TC=T/R-10000pcs

2.5.3 14th code: Special features.

E = Environmental Protection, Lead Free, or Standard type.

3. Ordering Procedure

(Example: PF02 $1/16W \pm 5\% 2.2\Omega T/R-10000$)

4. Marking

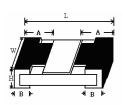
(1) For PF0A、PF01 and PF02 size. Due to the very 01005、0201、0402 small size of the resistor's body, there is no marking on the body.

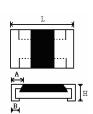
Normally, the making of 0Ω PF03, 0Ω PF05, 0Ω PF06, 0Ω PF07, 0Ω PF11, 0Ω PF10, 0Ω PF12 resistors as following

(2) $\pm 5\%$ Tolerance: The first two digits are significant figures of resistance and the third denotes number of zeros following

(3) $\pm 1\%$ Tolerance: 4 digits, first three digits are significant; forth digit is number of zeros. Letter r is decimal point.

 $\Omega \to 0$

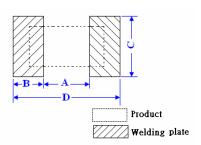



 $333 \rightarrow 33K\Omega$

 $2701 \rightarrow 2.7 \text{K}\Omega$

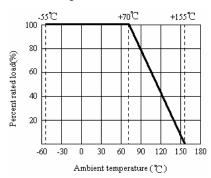
5. <u>Dimension</u>

Type		Dimen	sion(mm)		
	L	W	Н	A	В
PF0A(01005)	0.40±0.02	0.20±0.02	0.13±0.02	0.10±0.05	0.10±0.03
PF01(0201)	0.60±0.03	0.30±0.03	0.23±0.03	0.10±0.05	0.15±0.05
PF02(0402)	1.00±0.10	0.50±0.05	0.35±0.05	0.20±0.10	0.25±0.10
PF03(0603)	1.60±0.10	0.80±0.10	0.45±0.10	0.30±0.20	0.30±0.20
PF05(0805)	2.00±0.15	1.25+0.15/-0.10	0.55±0.10	0.40±0.20	0.40±0.20
PF06(1206)	3.10±0.15	1.55+0.15/-0.10	0.55±0.10	0.45±0.20	0.45±0.20
PF07(1210)	3.10±0.10	2.60±0.20	0.55±0.10	0.50±0.25	0.50±0.20
PF11(1812)	4.50±0.20	3.20±0.20	0.55±0.20	0.50±0.20	0.50±0.20
PF10(2010) 5.00±0.10		2.50±0.20	0.55±0.10	0.60±0.25	0.50±0.20
PF12(2512)	6.35±0.10	3.20±0.20	0.55±0.10	0.60±0.25	0.50±0.20


6. Resistance Range

Туре	Power Rating at 70°C	Max. Working Voltage	Max. Overload Voltage	Dielectric withstanding Voltage	Resistance Value of Jumper	Rated Current of Jumper	Max. Overload Current of Jumper	Resistance Range 1%	Resistance Range 5%	Operating Temperature
PF0A	1/32W	15V	30V		<50mΩ	0.5A	1A	10Ω~10ΜΩ	1Ω~10ΜΩ	-55℃~155℃
PF01	1/20W	25V	50V		<50mΩ	0.5A	1A	1Ω~10ΜΩ	1Ω~10ΜΩ	-55℃~155℃
PF02	1/16W	50V	100V	100V	<50mΩ	1A	2A	1Ω~10ΜΩ	1Ω~10ΜΩ	-55℃~155℃
PF03	1/10W	75V	150V	300V	<50mΩ	1A	2A	1Ω~10ΜΩ	1Ω~10ΜΩ	-55℃~155℃
PF05	1/8W	150V	300V	500V	<50mΩ	2A	5A	1Ω~10ΜΩ	1Ω~10ΜΩ	-55℃~155℃
PF06	1/4W	200V	400V	500V	<50mΩ	2A	10A	1Ω~10ΜΩ	1Ω~10ΜΩ	-55℃~155℃
PF07	1/2W	200V	500V	500V	<50mΩ	2A	10A	1Ω~10ΜΩ	1Ω~10ΜΩ	-55℃~155℃
PF11	3/4W	200V	500V	500V	<50mΩ	2A	10A	1Ω~10ΜΩ	1Ω~10ΜΩ	-55℃~155℃
PF10	3/4W	200V	500V	500V	<50mΩ	2A	10A	1Ω~10ΜΩ	1Ω~10ΜΩ	-55℃~155℃
PF12	1W	200V	500V	500V	<50mΩ	2A	10A	1Ω~10ΜΩ	1Ω~10ΜΩ	-55℃~155℃

7. Recommend the size of welding plate



Trms	Dimension(mm)								
Type	A	В	C	D					
PF0A	0.14±0.03	0.2±0.03	0.2±0.03	0.54±0.03					
PF01	0.25±0.15	0.225±0.15	0.3±0.03	1.0±0.05					
PF02	0.50±0.05	0.45±0.05	0.5±0.05	1.4±0.05					
PF03	0.8±0.05	0.65±0.05	0.8±0.05	2.1±0.05					
PF05	1.0±0.1	1.0±0.1	1.3±0.1	3.0±0.1					
PF06	2.0±0.1	1.1±0.1	1.6±0.1	4.2±0.1					
PF07	2.0±0.1	1.1±0.1	2.6±0.1	4.2±0.1					
PF10	3.6±0.1	1.3±0.1	2.6±0.1	6.2±0.1					
PF11	3.0±0.1	1.4±0.1	3.3±0.1	5.8±0.1					
PF12	4.9±0.1	1.6±0.1	3.3±0.1	8.1±0.1					

8. Derating Curve

Resistors shall have a power rating based on continuous load operation at an ambient temperature from -55 $^{\circ}$ C to 70 $^{\circ}$ C. For temperature in excess of 70 $^{\circ}$ C, the load shall be derated as shown in figure 1

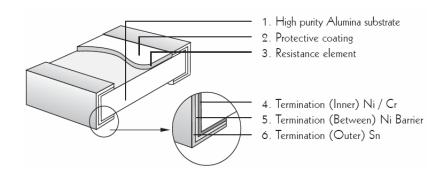
Figure 1

Voltage rating:

Resistors shall have a rated direct-current (DC) continuous working

Voltage or an approximate sine-wave root-mean-square (RMS) alternating-current (AC) continuous working voltage at commercial-line frequency and waveform corresponding to the power rating, as determined from the following formula:

$$RCWV = \sqrt{P \times R}$$


Where: RCWV commercial-line frequency and waveform (Volt.)

P = power rating (WATT.) R = nominal resistance (OHM)

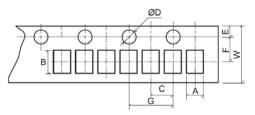
In no case shall the rated DC or RMS AC continuous working voltage be greater than the applicable maximum value.

The overload voltage is 2.5 times RCWV or Max. Overload voltage whichever is less

9. Structure

10. Performance Specification

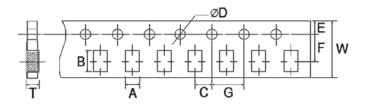
Characteristic		Limits	Test Method (GB/T5729&JIS-C-5201&IEC60115)				
© Temperature Coefficient	10Ω < R ≤ 1000 >1000 PF01: 1Ω ≤ R ≤ 10Ω:: >10Ω: PF02, PF03, 1 PF10, PF12: 1Ω ≤ R ≤ 1000 10Ω < R ≤ 1000	Ω: ±600PPM/°C Ω: ±400PPM/°C Ω: ±250PPM/°C ±400PPM/°C ±200PPM/°C PF05, PF06, PF07, PF11, Ω: ±400PPM/°C Ω: ±200PPM/°C Ω: ±200PPM/°C Ω: ±100PPM/°C	$ \begin{array}{l} 4.8 \text{ Natural resistance changes per temp. Degree centigrade} \\ \frac{R_2\text{-}R_1}{-} \times 10^6 (\text{PPM/°C}) & \frac{R_3\text{-}R_1}{-} \times 10^6 (\text{PPM/°C}) \\ \hline R_1(t_2\text{-}t_1) & R_1(t_3\text{-}t_1) \\ R_1: \text{ Resistance Value at room temperature } (t_1) \; ; \\ R_2: \text{ Resistance Value at upper limit temperature} \pm 2^\circ \!$				
	±1%	±(1%+0.1Ω) Max.	4.13 Permanent resistance change after the application of a poter				
© *Short-time	±5%	±(2%+0.1Ω) Max.	of 2.5 times RCWV or Max. Overload Voltage whichever less for 5				
overload	PF0A	±(2%+0.1Ω) Max	seconds				
	* <50mΩ	-	Apply max Overload current for 0Ω 4.7 Resistors shall be clamped in the trough of a 90°C metallic v-block and shall be tested at ac potential respectively specified in the given list of each product type for 60-70 seconds.				
* Dielectric withstanding voltage		of flashover mechanical g or insulation breaks down.					
	95% coverage	Min.	Wave solder: Test temperature of solder: 245°C±3°C dipping time in solder: 2-3 seconds.				
*Solderability	Go up tin rate	bigger than half of end pole	Reflow: 250				
	±1%	±(1%+0.1Ω)Max.					
Rapid change of temperature	±5%	±(3%+0.1Ω)Max	4.19 30 min at lower limit temperature and 30 min at upper limit temperature, 5 cycles.				
	PF0A	\pm (3.0%+0.05Ω) Max.					
© Soldering heat	Resistance cha $\pm (1\%+0.05\Omega)$	ange rate must be in	4.18 Dip the resistor into a solder bath having a temperature of 260 °C±5°C and hold it for 10±1 seconds.				
Terminal bending	±(1%+0.05Ω)	Max	4.33 Twist of test board: Y/X = 3/90 mm for 60Seconds				
* Insulation resistance	1,000 MΩ or 1	nore	4.6 The measuring voltage shall be ,measured with a direct voltage of (100±15)V or a voltage equal to the dielectric withstanding voltage., and apply for 1min.				



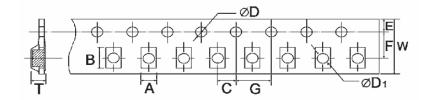
_	±1%	$\pm (0.5\% + 0.1\Omega)$ Max.	4.24Temporary resistance change after 240 hours exposure in a
Humidity(steady state)	±5%	$\pm (3.0\% + 0.1\Omega)$ Max.	humidity test chamber controlled at 40±2°C and 90-95% relative
, ,	PF0A	\pm (3.0%+0.05Ω) Max.	humidity,
	±1%	±(1%+0.1Ω)max.	7.9 Resistance change after 1,000 hours (1.5 hours "ON",0.5 hour
© *Load life	±5%	±(3%+0.1Ω)Max.	"OFF") at RCWV in a humidity chamber controlled at 40°C±2°C
in humidity	PF0A	$\pm (3.0\% + 0.05\Omega)$ Max.	and 90 to 95% relative humidity.
	* <50mΩ		Apply to rated current for 0Ω
	±1%	±(1%+0.1Ω)Max.	4.25.1 Permanent resistance change after 1,000 hours operating at
(a) 41 11:C	±5%	±(3%+0.1Ω)Max	RCWV with duty cycle 1.5 hours "ON", 0.5 hour "OFF" at 70°C±2
◎ *Load life	PF0A $\pm (3.0\% + 0.05\Omega)$ Max.		°C ambient.
	* <50mΩ		Apply to rated current for 0Ω
© *Low	±1%	±(1%+0.1Ω)Max.	
Temperature	±5%	±(3%+0.1Ω)Max	4.23.4 Lower limit temperature, for 2H.
Storage	PF0A	$\pm (3.0\% + 0.05\Omega)$ Max.	
	* <50mΩ		Apply to rated current for 0Ω
@ #II. 1	±1%	±(1%+0.1Ω)Max.	
*High Temperature	±5%	±(3%+0.1Ω)Max	4.23.2 Upper limit temperature , for 16H.
Exposure	PF0A	$\pm (3.0\% + 0.05\Omega)$ Max.	
Exposure	* <50mΩ		Apply to rated current for 0Ω
© *Leaching	No visible da	mage	J-STD-002 Test D Samples completely immersed for 30 sec in solder bath at 260°C

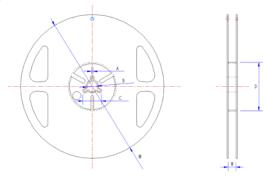
The resistors of 0Ω only can do the characteristic noted of *

11. Packing of Surface Mount Resistors


11.1 Dimension of Paper Taping :(Unit: mm)

Туре	A	В	C ±0.05	+0.1 ΦD -0	E ±0.1	F ±0.05	G ±0.1	W ±0.2	Т
PF0A	0.24±0.05	0.45±0.05	2.00	1.50	1.75	3.50	4.00	8.00	0.40±0.1
PF01	0.40±0.05	0.70±0.05	2.00	1.50	1.75	3.50	4.00	8.00	0.42±0.1
PF02	0.65±0.10	1.20±0.10	2.00	1.50	1.75	3.50	4.00	8.00	0.42±0.05



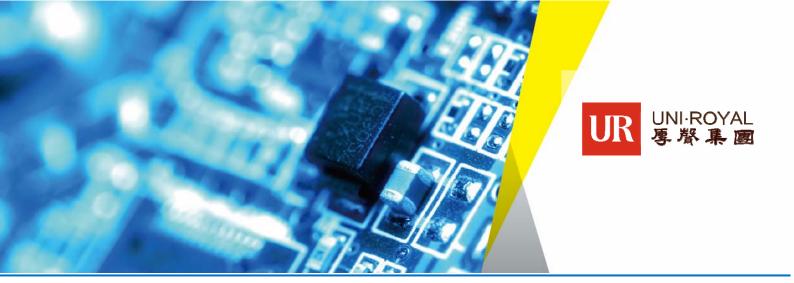

Туре	A ±0.2	B ±0.2	C ±0.05	+0.1 ΦD -0	E ±0.1	F ±0.05	G ±0.1	W ±0.2	T ±0.1
PF03	1.10	1.90	2.00	1.50	1.75	3.50	4.00	8.00	0.67
PF05	1.65	2.40	2.00	1.50	1.75	3.50	4.00	8.00	0.81
PF06	2.00	3.60	2.00	1.50	1.75	3.50	4.00	8.00	0.81
PF07	2.80	3.50	2.00	1.50	1.75	3.50	4.00	8.00	0.75

11.2 Dimension of Embossed Taping: (Unit: mm)

Туре	A ±0.2	B ±0.2	C ±0.05	+ 0.1 \$\delta D\$ - 0	+0.25 φD1 -0	E ±0.1	F ±0.05	G ±0.1	W ±0.2	T ±0.1
PF10	2.90	5.60	2.00	1.50	1.50	1.75	5.50	4.00	12.00	1.00
PF11	3.50	4.80	2.00	1.50	1.50	1.75	5.50	4.00	12.00	1.00
PF12	3.50	6.70	2.00	1.50	1.50	1.75	5.50	4.00	12.00	1.00

11.3 Dimension of Reel: (Unit: mm)

Туре	Taping	Qty/Reel	A ±0.5	B ±0.5	C ±0.5	D ±1	M ±2	W ±1
PF0A	Paper	20,000pcs	2.0	13.0	21.0	60.0	178.0	10.0
PF01	Paper	15,000pcs	2.0	13.0	21.0	60.0	178.0	10.0
PF02	Paper	10,000pcs	2.0	13.0	21.0	60.0	178.0	10.0
PF03	Paper	5,000pcs	2.0	13.0	21.0	60.0	178.0	10.0
PF05	Paper	5,000pcs	2.0	13.0	21.0	60.0	178.0	10.0
PF06	Paper	5,000pcs	2.0	13.0	21.0	60.0	178.0	10.0
PF07	Paper	5,000pcs	2.0	13.0	21.0	60.0	178.0	10.0
PF10	Embossed	4,000pcs	2.0	13.0	21.0	60.0	178.0	13.8
PF11	Embossed	4,000pcs	2.0	13.0	21.0	60.0	178	13.8
PF12	Embossed	4,000pcs	2.0	13.0	21.0	60.0	178.0	13.8


12. <u>Note</u>

- 12.1. UNI-ROYAL recommend the storage condition temperature: $15^{\circ}\text{C} \sim 35^{\circ}\text{C}$, humidity :25%~75%.
 - (Put condition for individual product). Even under UNI-ROYAL recommended storage condition, solderability of products over 1 year old. (Put condition for each product) may be degraded.
- 12.2. Store / transport cartons in the correct direction, which is indicated on a carton as a symbol.
 - Otherwise bent leads may occur due to excessive stress applied when dropping of a carton.
- 12.3. Product performance and soldered connections may deteriorate if the products are stored in the following places:
 - a. Storage in high Electrostatic.
 - b. Storage in direct sunshine ` rain and snow or condensation.
 - c. Where the products are exposed to sea winds or corrosive gases, including Cl₂, H₂S₃ NH₃, SO₂, NO₂.
- 12.4. The products are used in circuit board thickness greater than 1.6mm. If customers use less than the thickness of the circuit board that you should confirm with the company, in order to recommend a more suitable product.

13. Record

Version	Description of amendment	Page	Date	Amended by	Checked by
1	First issue of this specification	1~8	Mar.20, 2018	Chen Haiyan	Chen Nana
2	2 Modify PF01 packing quantity		Jun.06, 2018	Chen Haiyan	Chen Nana

Uniroyal Electronics Global Co., Ltd., all rights reserved. Spec. herein would be changed at any time without prior notice.

DATA SHEET

Product Name Complete Pb-Free Thick Film Chip Resistors

Part Name PF Series

Uniroyal Electronics Global Co., Ltd.

88 Longteng Road, Economic & Technical Development Zone, Kunshan, Jiangsu, China

Tel +86 512 5763 1411 / 22 /33

Email marketing@uni-royal.cn

Manufacture Plant Uniroyal Electronics Industry (kunshan) co., ltd.

Uniroyal Electronics Industry Co., Ltd.

Uniroyal Electronics Global Co.,Ltd Shenzhen Branch

Aeon Technology Corporation

Uniroyal Electronics Global Co.,Ltd Xiamen Branch

Kunshan Foss Electronic material Co., Ltd.

Brands RoyalOhm UniOhm

- 1.1 This specification for approve relates to the Complete Pb-Free Thick Film Chip Resistors manufactured by UNI-ROYAL
- 1.2 Total Lead-Free in Whole resistor body
- 1.3 Reduction of assembly costs and matching with placement machine
- 1.4 Suitable for both wave & re-flow soldering

2. Explanation of Part No. System

Part No. includes 14 codes shown as below:

2.1 1st~4th codes: Part name. E.g.: PF0A, PF01, PF02, PF03, PF05, PF06, PF07, PF11, PF10, PF12

2.2 5th~6th codes: Power rating.

E.g.: W=Normal S	ıze	"l~	G" = "1~1	6"						
Wattage	1/32	3/4	1/2	1/3	1/4	1/8	1/10	1/16	1/20	1
Normal Size	WH	07	W2	W3	W4	W8	WA	WG	WM	1W

If power rating is lower or equal than 1 watt, 5th code would be "W" and 6th code would be a number or letter.

E.g.: WA=1/10W

W4=1/4W

2.3 7th code: Tolerance. E.g.: $D=\pm0.5\%$ $F=\pm1\%$

G=±2%

J=±5%

 $K = \pm 10\%$

2.4 8th~11th codes: Resistance Value.

2.4.1 If value belongs to standard value of ≥5% series, 8th code would be zero,9th~10th codes are significant figures of the resistance and 11th code is the power of ten.

2.4.2 If value belongs to standard value of ≤2% series, 8th~10th codes are significant figures of the resistance, and 11th code is the power of ten.

 $5=10^{5}$

2.4.3 11th codes listed as following:

 $0 = 10^{0}$

 $1=10^{1}$

 $2 = 10^{2}$ $3=10^3$ $4=10^4$

 $6 = 10^6$

 $J=10^{-1}$

K=10⁻² L=10⁻³ M=10⁻⁴

 $2.5 \ 12^{th} \sim 14^{th}$ codes.

2.5.1 12th code: Packaging Type. E.g.: C=Bulk

T=Tape/Reel

2.5.2 13th code: Standard Packing Quantity.

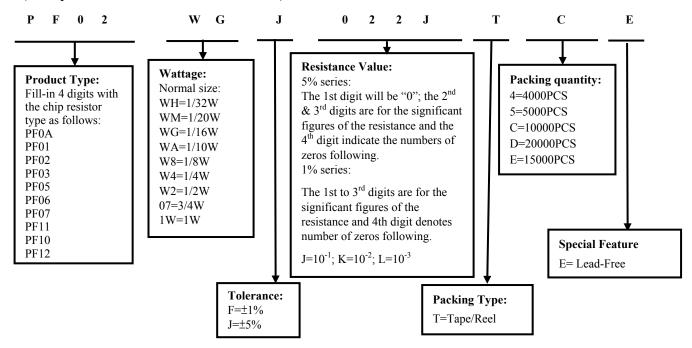
5=5000pcs 4=4000pcs

C=10000pcs

D=20000pcs

E=15000pcs

Chip Product: BD=B/B-20000pcs


TC=T/R-10000pcs

2.5.3 14th code: Special features.

E = Environmental Protection, Lead Free, or Standard type.

3. Ordering Procedure

(Example: PF02 $1/16W \pm 5\% 2.2\Omega T/R-10000$)

4. Marking

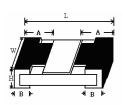
(1) For PF0A、PF01 and PF02 size. Due to the very 01005、0201、0402 small size of the resistor's body, there is no marking on the body.

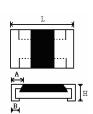
Normally, the making of 0Ω PF03, 0Ω PF05, 0Ω PF06, 0Ω PF07, 0Ω PF11, 0Ω PF10, 0Ω PF12 resistors as following

(2) $\pm 5\%$ Tolerance: The first two digits are significant figures of resistance and the third denotes number of zeros following

(3) $\pm 1\%$ Tolerance: 4 digits, first three digits are significant; forth digit is number of zeros. Letter r is decimal point.

 $\Omega \to 0$

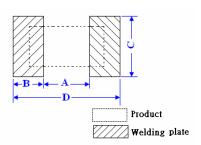



 $333 \rightarrow 33K\Omega$

 $2701 \rightarrow 2.7 \text{K}\Omega$

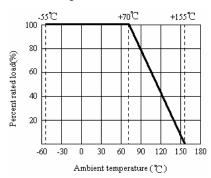
5. <u>Dimension</u>

Type	Dimension(mm)									
	L	W	Н	A	В					
PF0A(01005)	0.40±0.02	0.20±0.02	0.13±0.02	0.10±0.05	0.10±0.03					
PF01(0201)	0.60±0.03	0.30±0.03	0.23±0.03	0.10±0.05	0.15±0.05					
PF02(0402)	1.00±0.10	0.50±0.05	0.35±0.05	0.20±0.10	0.25±0.10					
PF03(0603)	1.60±0.10	0.80±0.10	0.45±0.10	0.30±0.20	0.30±0.20					
PF05(0805)	2.00±0.15	1.25+0.15/-0.10	0.55±0.10	0.40±0.20	0.40±0.20					
PF06(1206)	3.10±0.15	1.55+0.15/-0.10	0.55±0.10	0.45±0.20	0.45±0.20					
PF07(1210)	3.10±0.10	2.60±0.20	0.55±0.10	0.50±0.25	0.50±0.20					
PF11(1812)	4.50±0.20	3.20±0.20	0.55±0.20	0.50±0.20	0.50±0.20					
PF10(2010)	5.00±0.10	2.50±0.20	0.55±0.10	0.60±0.25	0.50±0.20					
PF12(2512)	6.35±0.10	3.20±0.20	0.55±0.10	0.60±0.25	0.50±0.20					


6. Resistance Range

Туре	Power Rating at 70°C	Max. Working Voltage	Max. Overload Voltage	Dielectric withstanding Voltage	Resistance Value of Jumper	Rated Current of Jumper	Max. Overload Current of Jumper	Resistance Range 1%	Resistance Range 5%	Operating Temperature
PF0A	1/32W	15V	30V		<50mΩ	0.5A	1A	10Ω~10ΜΩ	1Ω~10ΜΩ	-55℃~155℃
PF01	1/20W	25V	50V		<50mΩ	0.5A	1A	1Ω~10ΜΩ	1Ω~10ΜΩ	-55℃~155℃
PF02	1/16W	50V	100V	100V	<50mΩ	1A	2A	1Ω~10ΜΩ	1Ω~10ΜΩ	-55℃~155℃
PF03	1/10W	75V	150V	300V	<50mΩ	1A	2A	1Ω~10ΜΩ	1Ω~10ΜΩ	-55℃~155℃
PF05	1/8W	150V	300V	500V	<50mΩ	2A	5A	1Ω~10ΜΩ	1Ω~10ΜΩ	-55℃~155℃
PF06	1/4W	200V	400V	500V	<50mΩ	2A	10A	1Ω~10ΜΩ	1Ω~10ΜΩ	-55℃~155℃
PF07	1/2W	200V	500V	500V	<50mΩ	2A	10A	1Ω~10ΜΩ	1Ω~10ΜΩ	-55℃~155℃
PF11	3/4W	200V	500V	500V	<50mΩ	2A	10A	1Ω~10ΜΩ	1Ω~10ΜΩ	-55℃~155℃
PF10	3/4W	200V	500V	500V	<50mΩ	2A	10A	1Ω~10ΜΩ	1Ω~10ΜΩ	-55℃~155℃
PF12	1W	200V	500V	500V	<50mΩ	2A	10A	1Ω~10ΜΩ	1Ω~10ΜΩ	-55℃~155℃

7. Recommend the size of welding plate



Trms		Dimension(mm)								
Type	A	В	C	D						
PF0A	0.14±0.03	0.2±0.03	0.2±0.03	0.54±0.03						
PF01	0.25±0.15	0.225±0.15	0.3±0.03	1.0±0.05						
PF02	0.50±0.05	0.45±0.05	0.5±0.05	1.4±0.05						
PF03	0.8±0.05	0.65±0.05	0.8±0.05	2.1±0.05						
PF05	1.0±0.1	1.0±0.1	1.3±0.1	3.0±0.1						
PF06	2.0±0.1	1.1±0.1	1.6±0.1	4.2±0.1						
PF07	2.0±0.1	1.1±0.1	2.6±0.1	4.2±0.1						
PF10	3.6±0.1	1.3±0.1	2.6±0.1	6.2±0.1						
PF11	3.0±0.1	1.4±0.1	3.3±0.1	5.8±0.1						
PF12	4.9±0.1	1.6±0.1	3.3±0.1	8.1±0.1						

8. Derating Curve

Resistors shall have a power rating based on continuous load operation at an ambient temperature from -55 $^{\circ}$ C to 70 $^{\circ}$ C. For temperature in excess of 70 $^{\circ}$ C, the load shall be derated as shown in figure 1

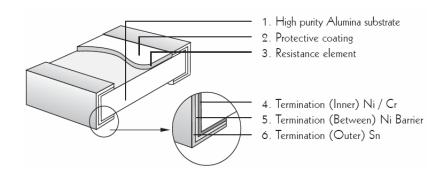
Figure 1

Voltage rating:

Resistors shall have a rated direct-current (DC) continuous working

Voltage or an approximate sine-wave root-mean-square (RMS) alternating-current (AC) continuous working voltage at commercial-line frequency and waveform corresponding to the power rating, as determined from the following formula:

$$RCWV = \sqrt{P \times R}$$


Where: RCWV commercial-line frequency and waveform (Volt.)

P = power rating (WATT.) R = nominal resistance (OHM)

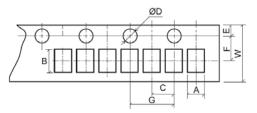
In no case shall the rated DC or RMS AC continuous working voltage be greater than the applicable maximum value.

The overload voltage is 2.5 times RCWV or Max. Overload voltage whichever is less

9. Structure

10. Performance Specification

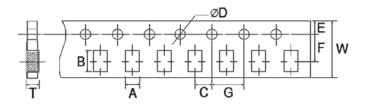
Characteristic		Limits	Test Method (GB/T5729&JIS-C-5201&IEC60115)			
© Temperature Coefficient	10Ω < R ≤ 1000 >1000 PF01: 1Ω ≤ R ≤ 10Ω:: >10Ω: PF02, PF03, 1 PF10, PF12: 1Ω ≤ R ≤ 1000 10Ω < R ≤ 1000	Ω: ±600PPM/°C Ω: ±400PPM/°C Ω: ±250PPM/°C ±400PPM/°C ±200PPM/°C PF05, PF06, PF07, PF11, Ω: ±400PPM/°C Ω: ±200PPM/°C Ω: ±200PPM/°C Ω: ±100PPM/°C	$\begin{array}{c} 4.8 \text{ Natural resistance changes per temp. Degree centigrade} \\ \hline \frac{R_2\text{-}R_1}{R_1(t_2\text{-}t_1)} \times 10^6 (\text{PPM/°C}) & \overline{R_1(t_3\text{-}t_1)} \\ \hline R_1: \text{ Resistance Value at room temperature } & (t_1) \; ; \\ R_2: \text{ Resistance Value at lower limit temperature } \pm 2^{\circ}\!$			
	±1%	±(1%+0.1Ω) Max.	4.13 Permanent resistance change after the application of a potentia			
© *Short-time	±5%	±(2%+0.1Ω) Max.	of 2.5 times RCWV or Max. Overload Voltage whichever less			
overload	PF0A	±(2%+0.1Ω) Max	seconds			
	* <50mΩ	-	Apply max Overload current for 0Ω			
* Dielectric withstanding voltage		of flashover mechanical g or insulation breaks down.	4.7 Resistors shall be clamped in the trough of a 90°C metallic v-block and shall be tested at ac potential respectively specified in the given list of each product type for 60-70 seconds.			
	95% coverage	Min.	Wave solder: Test temperature of solder: 245°C±3°C dipping time in solder: 2-3 seconds.			
*Solderability	Go up tin rate	bigger than half of end pole	Reflow: 250			
	±1%	±(1%+0.1Ω)Max.				
Rapid change of temperature	±5%	±(3%+0.1Ω)Max	4.19 30 min at lower limit temperature and 30 min at upper limit temperature, 5 cycles.			
	PF0A	\pm (3.0%+0.05Ω) Max.				
© Soldering heat	Resistance cha $\pm (1\%+0.05\Omega)$	ange rate must be in	4.18 Dip the resistor into a solder bath having a temperature of 260 °C±5°C and hold it for 10±1 seconds.			
Terminal bending	±(1%+0.05Ω)	Max	4.33 Twist of test board: Y/X = 3/90 mm for 60Seconds			
* Insulation resistance	1,000 MΩ or 1	nore	4.6 The measuring voltage shall be ,measured with a direct voltage of (100±15)V or a voltage equal to the dielectric withstanding voltage., and apply for 1min.			



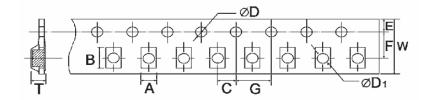
_	±1%	$\pm (0.5\% + 0.1\Omega)$ Max.	4.24Temporary resistance change after 240 hours exposure in a					
Humidity(steady state)	±5%	$\pm (3.0\% + 0.1\Omega)$ Max.	humidity test chamber controlled at 40±2°C and 90-95% relative					
, ,	PF0A	$\pm (3.0\% + 0.05\Omega)$ Max.	humidity,					
	±1%	±(1%+0.1Ω)max.	7.9 Resistance change after 1,000 hours (1.5 hours "ON",0.5 hour					
© *Load life	±5%	±(3%+0.1Ω)Max.	"OFF") at RCWV in a humidity chamber controlled at 40°C±2°C					
in humidity	PF0A	±(3.0%+0.05Ω) Max.	and 90 to 95% relative humidity.					
	* <50mΩ		Apply to rated current for 0Ω					
	±1%	±(1%+0.1Ω)Max.	4.25.1 Permanent resistance change after 1,000 hours operating at					
@ *I 11.C	±5%	±(3%+0.1Ω)Max	RCWV with duty cycle 1.5 hours "ON", 0.5 hour "OFF" at 70°C±2					
© *Load life	PF0A	$\pm (3.0\% + 0.05\Omega)$ Max.	°C ambient.					
	* <50mΩ		Apply to rated current for 0Ω					
© *Low	±1%	±(1%+0.1Ω)Max.						
Temperature	±5%	±(3%+0.1Ω)Max	4.23.4 Lower limit temperature, for 2H.					
Storage	PF0A	$\pm (3.0\% + 0.05\Omega)$ Max.						
	* <50mΩ		Apply to rated current for 0Ω					
@ #II: 1	±1%	±(1%+0.1Ω)Max.						
*High Temperature	±5%	±(3%+0.1Ω)Max	4.23.2 Upper limit temperature , for 16H.					
Exposure	PF0A	$\pm (3.0\% + 0.05\Omega)$ Max.						
Exposure	* <50mΩ		Apply to rated current for 0Ω					
© *Leaching	No visible da	mage	J-STD-002 Test D Samples completely immersed for 30 sec in solder bath at 260°C					

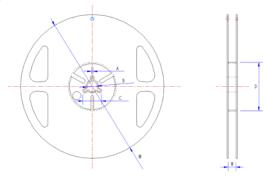
The resistors of 0Ω only can do the characteristic noted of *

11. Packing of Surface Mount Resistors


11.1 Dimension of Paper Taping :(Unit: mm)

Туре	A	В	C ±0.05	+0.1 ΦD -0	E ±0.1	F ±0.05	G ±0.1	W ±0.2	Т
PF0A	0.24±0.05	0.45±0.05	2.00	1.50	1.75	3.50	4.00	8.00	0.40±0.1
PF01	0.40±0.05	0.70±0.05	2.00	1.50	1.75	3.50	4.00	8.00	0.42±0.1
PF02	0.65±0.10	1.20±0.10	2.00	1.50	1.75	3.50	4.00	8.00	0.42±0.05




Туре	A ±0.2	B ±0.2	C ±0.05	+0.1 ΦD -0	E ±0.1	F ±0.05	G ±0.1	W ±0.2	T ±0.1
PF03	1.10	1.90	2.00	1.50	1.75	3.50	4.00	8.00	0.67
PF05	1.65	2.40	2.00	1.50	1.75	3.50	4.00	8.00	0.81
PF06	2.00	3.60	2.00	1.50	1.75	3.50	4.00	8.00	0.81
PF07	2.80	3.50	2.00	1.50	1.75	3.50	4.00	8.00	0.75

11.2 Dimension of Embossed Taping: (Unit: mm)

Туре	A ±0.2	B ±0.2	C ±0.05	+ 0.1 \$\delta D\$ - 0	+0.25 φD1 -0	E ±0.1	F ±0.05	G ±0.1	W ±0.2	T ±0.1
PF10	2.90	5.60	2.00	1.50	1.50	1.75	5.50	4.00	12.00	1.00
PF11	3.50	4.80	2.00	1.50	1.50	1.75	5.50	4.00	12.00	1.00
PF12	3.50	6.70	2.00	1.50	1.50	1.75	5.50	4.00	12.00	1.00

11.3 Dimension of Reel: (Unit: mm)

Туре	Taping	Qty/Reel	A ±0.5	B ±0.5	C ±0.5	D ±1	M ±2	W ±1
PF0A	Paper	20,000pcs	2.0	13.0	21.0	60.0	178.0	10.0
PF01	Paper	15,000pcs	2.0	13.0	21.0	60.0	178.0	10.0
PF02	Paper	10,000pcs	2.0	13.0	21.0	60.0	178.0	10.0
PF03	Paper	5,000pcs	2.0	13.0	21.0	60.0	178.0	10.0
PF05	Paper	5,000pcs	2.0	13.0	21.0	60.0	178.0	10.0
PF06	Paper	5,000pcs	2.0	13.0	21.0	60.0	178.0	10.0
PF07	Paper	5,000pcs	2.0	13.0	21.0	60.0	178.0	10.0
PF10	Embossed	4,000pcs	2.0	13.0	21.0	60.0	178.0	13.8
PF11	Embossed	4,000pcs	2.0	13.0	21.0	60.0	178	13.8
PF12	Embossed	4,000pcs	2.0	13.0	21.0	60.0	178.0	13.8

12. <u>Note</u>

- 12.1. UNI-ROYAL recommend the storage condition temperature: $15^{\circ}\text{C} \sim 35^{\circ}\text{C}$, humidity :25%~75%.
 - (Put condition for individual product). Even under UNI-ROYAL recommended storage condition, solderability of products over 1 year old. (Put condition for each product) may be degraded.
- 12.2. Store / transport cartons in the correct direction, which is indicated on a carton as a symbol.
 - Otherwise bent leads may occur due to excessive stress applied when dropping of a carton.
- 12.3. Product performance and soldered connections may deteriorate if the products are stored in the following places:
 - a. Storage in high Electrostatic.
 - b. Storage in direct sunshine ` rain and snow or condensation.
 - c. Where the products are exposed to sea winds or corrosive gases, including Cl₂, H₂S₃ NH₃, SO₂, NO₂.
- 12.4. The products are used in circuit board thickness greater than 1.6mm. If customers use less than the thickness of the circuit board that you should confirm with the company, in order to recommend a more suitable product.

13. Record

Version	Description of amendment	Page	Date	Amended by	Checked by
1	First issue of this specification	1~8	Mar.20, 2018	Chen Haiyan	Chen Nana
2	Modify PF01 packing quantity	8	Jun.06, 2018	Chen Haiyan	Chen Nana

Uniroyal Electronics Global Co., Ltd., all rights reserved. Spec. herein would be changed at any time without prior notice.