

DATA SHEET

Product Name Metal Glaze Film Fixed Resistors

Part Name MGR Series

Uniroyal Electronics Global Co., Ltd.

88 Longteng Road, Economic & Technical Development Zone, Kunshan, Jiangsu, China

Tel	+86 512 5763 1411 / 22 /33
Email	marketing@uni-royal.cn
Manufacture Plant	Uniroyal Electronics Industry (kunshan) co., ltd.
	Uniroyal Electronics Industry Co., Ltd.
	Uniroyal Electronics Global Co.,Ltd Shenzhen Branch
	Aeon Technology Corporation
	Uniroyal Electronics Global Co.,Ltd Xiamen Branch
	Kunshan Foss Electronic material Co., Ltd.
	Royal Electronic Factory (thailand) co., ltd

Brands

RoyalOhm UniOhm

1. Scope

- 1.1 This specification for approve relates Metal Glaze Film Fixed Resistors manufactured by UNI-ROYAL.
- 1.2 Provide high stable performance against environment conditions & overload voltage
- 1.3 Can withstand High Surge Voltage
- 1.4 Wide resistance rang & low TCR
- 1.5 VDE items available(File NO:40003686、A414、D708、A759)
- 1.6 UL items available (File NO:20130925-E364163、E244546)

2. Part No. System

The standard Part No. includes 14 digits with the following explanation:

- 2.1 Coated type, the 1st to 3rd digits are to indicate the product type and 4th digit is the special feature.
 - Example: MGR0= Metal Glaze film fixed Resistors;
- 2.2 5th~6th digits:
- 2.2.1 This is to indicate the wattage or power rating. To dieting the size and the numbers,

The following codes are used; and please refer to the following chart for detail:

W=Normal Size; S=Small Size; U= Ultra Small Size; "1"~"G"to denotes"1"~"16"as Hexadecimal:

 $1/16W \sim 1/2W (< 1W)$

Wattage	1/2	1/3	1/4	1/5	1/6	1/8	1/10	1/16
Normal Size	W2	W3	W4	W5	W6	W8	WA	WG
Small Size	S2	S3	S4	S5	S6	S8	SA	SG
Ultra Small Size	U2	U3	U4	U5	U6	U8	UA	UG

$1W \sim 16W (\geq 1V)$	••)

11 10 II (= 1 II)									
Wattage	1	2	3	5	7	8	9	10	15
Normal Size	1W	2W	3W	5W	7W	8W	9W	AW	FW
Small Size	1S	2S	3S	5S	7S	8S	9S	AS	FS
Ultra Small Size	1U	2U	3U	5U	7U	8U	9U	AU	FU
ondu Sinun Size	10	20	50	20	10	00	70	-	10

2.2.2 For power rating less than 1 watt, the 5th digit will be the letters W, S or U to represent the size required & the 6th digit will be a number or a letter code.

Example: WA=1/10W; U2=1/2W-SS.

- 2.2.3 For power of 1 watt to 16 watt, the 5th digit will be a number or a letter code and the 6th digit will be the letters of W, S or U. Example: AW=10W; 3S=3W-S
- 2.3 The 7th digit is to denote the Resistance Tolerance. The following letter code is to be used for indicating the standard Resistance Tolerance. F=±1% G=±2% J=±5% K=±10%
- 2.4 The 8th to 11th digits is to denote the Resistance Value.

2.4.1 For the standard resistance values of E-24 series, the 8th digit is "0", the 9th & 10th digits are to denote the significant figures of the resistance and the 11th digit is the number of zeros following;

For the standard resistance values of E-96 series, the 8th digit to the 10th digits is to denote the significant figures of the resistance and the 11th digit is the 11th digit is the zeros following.

2.4.2 The following number s and the letter codes are to be used to indicate the number of zeros in the 11th digit:

 $0=10^{0}$ $1=10^{1}$ $2=10^{2}$ $3=10^{3}$ $4=10^{4}$ $5=10^{5}$ $6=10^{6}$ $J=10^{-1}$ $K=10^{-2}$ $L=10^{-3}$ $M=10^{-4}$

2.4.3 The 12th, 13th & 14th digits. The 12th digit is to denote the Packaging Type with the following codes:

A=Tape/Box (Ammo pack) B=Bulk/Box

T=Tape/Reel P=Tape/Box of PT-26 products

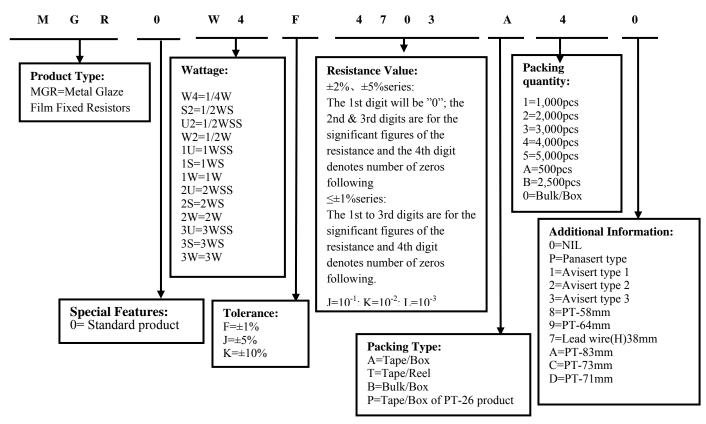
2.4.4 The 13th digit is normally to indicate the Packing Quantity of Tape/Box & Tape/Reel packaging types. The following letter code is to be used for some packing quantities:

A=500pcs B=2500pcs C=10000pcs D=20000pcs G=25000pcs H=50000pcs

2.4.5 For the FORMED type products, the 13th & 14th digits are used to denote the forming types of the product with the following letter codes:

MF=M-type with flattened lead wire	F0= F-type
MK= M-type with kinked lead wire	F1=F1-type
ML= M-type with normal lead wire	F2= F2-type
MC= M-type with bending lead wire	F3=F3-type

2.4.6 For some items, the 14th digit alone can use to denote special features of additional information with the following codes:


2	6	1	
0=NIL	P=Panasert type	1=Avisert type 1	2=Avisert type 2
3=Avisert type 3	8=PT-58mm	9=PT-64mm	7=Lead wire(H)38mm
A=PT-83mm	C=PT-73mm	D=PT-71mm	

3. <u>Ordering Procedure</u>

(Example: MGR 1/4W \pm 1% 470K Ω T/B-4000)

4. Marking

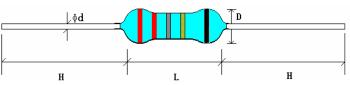
Resistors shall be marked with color coding Colors shall be in accordance with JIS C 0802

4.1 Label:

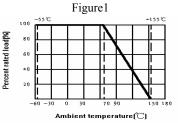
Label shall be marked with following items:

- (1) Type and style
- (2) Nominal resistance
- (3) Resistance tolerance
- (4) Quantity
- (5) Lot number
- (6) PPM

Example:


METAL GLAZE FIL	M FIXED RESISTORS
WATT: 1/2W	VAL: 750KΩ
Q'TY: 1,000	TOL: 5%
LOT: 4021548	PPM:

5.1 Normal size


5. Dimension& Resistance Range

5.1 Normal si	ze			1					
		Dimension(n	nm)		Max	Max	Dielectric		
Туре	D	L	d	Н	Working	Overload	Withstanding	Tolerance	Resistance Range
	D	L	±0.05	±3	Voltage	Voltage	Voltage		
								±1%	$\leq 10 M\Omega$
MGR 1/4W	2.2±0.5	6.5±1.0	0.60	28	1600V	2000V	700V	±2%	10ΜΩ~100ΜΩ
								±5%,±10%	1ΚΩ~510ΜΩ
								±1%	$\leq 10 M\Omega$
MGR 1/2W	3.5±0.6	9.5±1.0	0.60	28	3500V	4000V	700V	±2%	10ΜΩ~100ΜΩ
								±5%,±10%	1ΚΩ~510ΜΩ
								±1%	$\leq 10 M\Omega$
MGR 1W	4.0±0.6	11.5±1.0	0.75	25	3500V	4000V	1000V	±2%	10ΜΩ~100ΜΩ
								±5%,±10%	1KΩ~1GΩ
								±1%	$\leq 10 M\Omega$
MGR 2W	5.0±0.6	15.5±1.0	0.80	28	3500V	4000V	1000V	±2%	10ΜΩ~100ΜΩ
								±5%,±10%	1KΩ~1GΩ
NOD AN	(0)0(17.5.1.0	0.00	20	250014	400014	1000V	±1%	100ΚΩ~1ΜΩ
MGR 3W	6.0±0.6	17.5±1.0	0.80	28	3500V	4000V	1000 v	±5%,±10%	1ΚΩ~100ΜΩ
5.2 Small Size	e & Extra Sm	all Size							
		Dimensior	(mm)		Max	Max	Dielectric		
Туре		Ŧ	d	Н	Working	Overload	Withstanding	Tolerance	Resistance Range
	D	L	±0.05	±3	Voltage	Voltage	Voltage		
NGD 1/200	22.05	65.10	0.60	20	50017	70014	50014	±1%	100ΚΩ~1ΜΩ
MGR 1/2WS	2.2±0.5	6.5±1.0	0.60	28	500V	700V	500V	±5%,±10%	1ΚΩ~33ΜΩ
MCD 1WG	25100	0.5+1.0	0.00	20	700V	10001/	70014	±1%	100ΚΩ~1ΜΩ
MGR 1WS	3.5±0.6	9.5±1.0	0.60	28	700 V	1000V	700V	±5%,±10%	1ΚΩ~33ΜΩ
MCD 2000	15100	11.5.1.0	0.75	25	10001/	14001/	70014	±1%	100ΚΩ~1ΜΩ
MGR 2WS	4.5±0.6	11.5±1.0	0.75	25	1000V	1400V	700V	±5%,±10%	1ΚΩ~33ΜΩ
MCD 2000	4.510.4	11.5.1.0	0.75	25	100017	140017	7001/	±1%	100ΚΩ~1ΜΩ
MGR 3WSS	4.5±0.6	11.5±1.0	0.75	25	1000V	1400V	700V	±5%,±10%	1ΚΩ~33ΜΩ
MCD 2000	50:07	15.5+1.0	0.00	20	100017	140017	70014	±1%	100ΚΩ~1ΜΩ
MGR 3WS	5.0±0.6	15.5±1.0	0.80	28	1000V	1400V	700V	±5%,±10%	1ΚΩ~33ΜΩ

6. Derating Curve

Resistors shall have a power rating based on continuous load operation at an ambient temperature from -55 $^{\circ}$ C to 70 $^{\circ}$ C. For temperature in excess of 70 $^{\circ}$ C, the load shall be derate as shown in figure 1

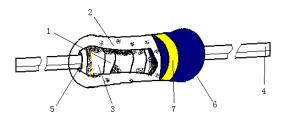
6.1 Voltage rating:

Resistors shall have a rated direct-current (DC) continuous working voltage or an approximate sine-wave root-mean-square (RMS) alternating-current (AC) continuous working voltage at commercial-line frequency and waveform corresponding to the power rating, as determined from the following formula:

$$RCWV = \sqrt{P \times R}$$

Where: RCWV = Rated DC or RMS AC continuous working voltage at

commercial-line frequency and waveform (VOLT.)


P = power rating (WATT.) R= nominal resistance (OHM)

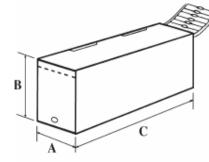
The overload voltage is 2.5 times RCWV or Max. Overload voltage whichever is less.

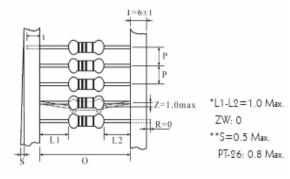
7. Structure

No.	Name	Material
1	Basic Body	Rod type ceramics
2	Resistor	Metal Glaze Film (Ruthenium Oxide)
3	End Cap	Steel (Tin-Plated iron surface)
4	Lead Wire	Tin solder coated copper wire
5	Joint	By Welding
6	Coating	Color: 1/4W: (Blue) 1/2WS,1/2W, 1WS, 1W, 2WS,2W, 3WSS,3WS 3W: (Sky Blue)
7	Color Code	Epoxy Resin

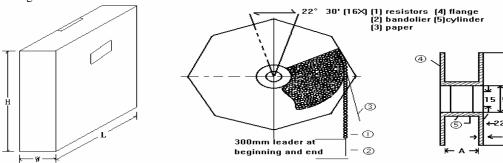
8. <u>Performance Specification</u>

Characteristic	Limits	Test Methods (GB/T5729&JIS-C-5201&IEC60115-1)				
Temperature Coefficient	$=\pm/10PPM/U$					
Short-time overload	$\Delta R/R \le \pm (1\% + 0.05 \Omega)$, with no evidence of mechanical damage	4.13 Permanent resistance change after the application of a potential of 2.5 times rcwv for 5 seconds.				
Dielectric withstanding voltage	With no evidence of flashover, mechanical damage, arcing or insulation breakdown	4.7 Resistors shall be clamped in the trough of a 90° metallic v-block and shall be tested at ac potential respectively specified in the above list for 60-70 seconds.				
Pulse overload	$\Delta R/R \le \pm (2\%+0.05)$, with no evidence of mechanical damage	4.28 Resistance change after 10,000 cycles (1 second "ON ", 25 seconds "OFF ") at 4 timesRCWV.				
Resistance to soldering heat	$\Delta R/R \le \pm (1\% + 0.05 \Omega)$ with no evidence of mechanical damage	 4.18 Permanent resistance change when leads immersed to a point 2.0- 2.5mm from the body in 260°C±5°C solder for 10±1 seconds. 				
Resistance to solvent	No deterioration of protective coatings & markings	4.29 Specimens shall be immersed in a bath of alcohol completely for 3 min. With ultrasonic				


	1				
Terminal strength	No evidence of mechanical damage	 4.16 Direct load: Resistance to a 2.5 kg direct load for 10 seconds in the direction of the longitudinal axis of the terminal leads. Twist test: Terminal leads shall be bent through 90°at a point of about 6mm from the body of the resistor and shall be rotated through 360° about the original axis of the bent terminal in alternating direction for a total of 3 rotations. 			
Solderability	Coverage must be over 95%.	 4.17 The area covered with a new, smooth, clean, shiny and continuous surface free from concentrated pinholes. Test temp. Of solder:245 °C±3 °C Dwell time in solder: 2~3seconds. 			
Rapid change of temperature	$\Delta R/R \le \pm (1\% + 0.05 \Omega)$ with no evidence of mechanical damage	4.19 30 min at -55 °C and 30 min at 155°C; 100 cycles.			
Load life in humidity	$\Delta R/R \le \pm (5\% + 0.05 \Omega)$ with no evidence of mechanical damage.	7.9 resistance change after 1,000 hours (1.5 hours "ON",0.5 hour "OFF") at RCWV in a humidity test chamber controlled at $40^{\circ}C\pm2^{\circ}C$ and 90 to 95% relative humidity.			
Load life	$\Delta R/R \le \pm (5\% \pm 0.05 \Omega)$ with no evidence of mechanical damage	4.25.1 permanent resistance change after 1,000 hours operating at RCWV with duty cycle of 1.5 hours "ON", 0.5 hour "OFF" at 70° °C ambient.			
Surge withstanding voltage	$\Delta R/R \leq \pm (20\% + 0.05 \ \Omega) \text{ with no evidence}$ of mechanical damage Test circuit: $10k \qquad 0 \qquad \text{Sw}$ $\square C \text{ SOURCE } 0.001 \text{ uF} \qquad Rx$	The following discharge cycle is repeated in the circuit in the left fig.2.5 sec. ON, 2.5 sec. OFF,50cyclesApplied voltage (DC source)Resistance Range $1/4W$, $1/2W$, $1W$, $2W$, $3W$, $\geq 100K\Omega$ $10KV$ The following discharge cycle is repeated in the circuit in the left fig.2.5 sec. "ON", 2.5 sec"OFF", 10 cyclesApplied voltage (DC source)Resistance range $1/2WS$ $1WS$ $2WS$ 100K-1M $3000V$ $4000V$ $5000V$			
		$1M1-6M2$ $4000V$ $5000V$ $6000V$ $\geq 6M8$ $6000V$ $8000V$ $9000V$ Resistance range $3WSS$ $3WS$ / $100K-1M$ $5000V$ $8000V$ / $1M1-6M2$ $6000V$ $9000V$ / $\geq 6M8$ $9000V$ $10000V$ /			
Low Temperature Storage	$\Delta R/R \le \pm (5\% + 0.05 \Omega)$ with no evidence of mechanical damage	4.23.4 Lower limit temperature , for 2H.			
High Temperature Exposure	$\Delta R/R \le \pm (5\% \pm 0.05 \Omega)$ with no evidence of mechanical damage	4.23.2 Upper limit temperature , for 16H.			

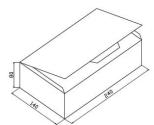


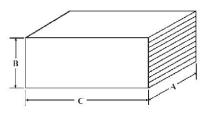
305


9. <u>Packing of Surface Mount Resistors</u> 9.1 Tapes in Box Packing

				Dimension of T/B (mm)				
Part No.	0	Р	A±5	B±5	C±5	Qty/Box		
MGR 1/4W	52±1	5±0.3	75	116	255	4000 PCS		
MGR 1/2W	52±1	5±0.3	75	70	255	1000 PCS		
MGR 1W	52±1	5±0.3	86	82	255	1000 PCS		
MGR 2W	64±5	10±0.5	90	119	255	1000 PCS		
MGR 3W	64±5	10±0.5	90	88	255	500 PCS		
MGR 1/2WS	52±1	5±0.3	75	116	255	4000 PCS		
MGR 1WS	52±1	5±0.3	75	70	255	1000 PCS		
MGR 2WS	52±1	5±0.3	86	82	255	1000 PCS		
MGR 3WSS	52±1	5±0.3	86	82	255	1000 PCS		
MGR 3WS	64±5	10±0.5	90	119	255	1000 PCS		

9.2 Tapes in Reel Packing




				Dimension of Reel (mm)		
Part No.	О	А	W±5	H±5	L±5	Qty/Box
MGR 1/4W	52±1	73±2	85	295	293	5,000pcs
MGR 1/2W	52±1	73±2	85	295	293	2,500pcs
MGR 1W	52±1	73±2	85	295	293	1,000pcs
MGR 2W	64±5	80±5	95	295	293	1,000pcs
MGR 3W	64±5	80±5	95	295	293	1,000pcs
MGR 1/2WS	52±1	73±2	85	295	293	5,000pcs
MGR 1WS	52±1	73±2	85	295	293	2,500pcs
MGR 2WS	52±1	73±2	85	295	293	1,000pcs
MGR 3WSS	52±1	73±2	85	295	293	1,000pcs
MGR 3WS	64±5	80±5	95	295	293	1,000pcs

9.3 Bulk in Box Packing

				Dimension of Box (mm)	
Part No.	A±5	B±5	C±5	Qty. of Bag/Box	
MGR 1/4W	140	80	240	500/10,000pcs	
MGR 1/2W	140	80	240	250/5,000pcs	
MGR 1W	140	80	240	100/2,500pcs	
MGR 2W	140	80	240	100/1,500pcs	
MGR 3W	140	80	240	100/1,000pcs	
MGR 1/2WS	140	80	240	500/10,000pcs	
MGR 1WS	140	80	240	250/5,000pcs	
MGR 2WS	140	80	240	100/2,500pcs	
MGR 3WSS	140	80	240	100/2,500pcs	
MGR 3WS	140	80	240	100/1,500pcs	

10. Note

10.1 UNI-ROYAL recommend the storage condition temperature: 15°C~35°C, humidity :25%~75%. (Put condition for individual product)

Even under UNI-ROYAL recommended storage condition, solderability of products over 1 year old. (Put condition for each product) may be degraded.

10.2 Store / transport cartons in the correct direction, which is indicated on a carton as a symbol.

Otherwise bent leads may occur due to excessive stress applied when dropping of a carton.

10.3 Product performance and soldered connections may deteriorate if the products are stored in the following places:

a. Storage in high Electrostatic

b. Storage in direct sunshine $\, \cdot \,$ rain and snow or condensation

c. Where the products are exposed to sea winds or corrosive gases, including Cl_2 , H_2S_3 NH_3 , SO_2 , NO_2 .

11. Record

Version	Description of amendment	Page	Date	Amended by	Checked by
1	First issue of this specification	1~7	Mar.20, 2018	Chen Haiyan	Chen Nana
2	Modify the Performance Specification	5~6	Feb.19, 2019	Chen Haiyan	Xu Yuhua

Uniroyal Electronics Global Co., Ltd., all rights reserved. Spec. herein would be changed at any time without prior notice