

DATA SHEET

Product Name Ultra Low Chip Resistors

Part Name LR Series

Uniroyal Electronics Global Co., Ltd.

88 Longteng Road, Economic & Technical Development Zone, Kunshan, Jiangsu, China

Tel	+86 512 5763 1411 / 22 /33				
Email	marketing@uni-royal.cn				
Manufacture Plant	Uniroyal Electronics Industry (kunshan) co., ltd.				
	Uniroyal Electronics Industry Co., Ltd.				
	Uniroyal Electronics Global Co.,Ltd Shenzhen Branch				
	Aeon Technology Corporation				
	Uniroyal Electronics Global Co.,Ltd Xiamen Branch				
	Kunshan Foss Electronic material Co., Ltd.				

Brands

RoyalOhm UniOhm

UR 导聚素圈

Ultra Low Chip Resistors - Data Sheet

1. Scope

- 1.1 This specification for approve relates to the Ultra Low Chip Resistors manufactured by UNI-ROYAL.
- 1.2 High power rating up to 3 watts
- 1.3 Low T.C.R until ±50PPM
- 1.4 Low resistance values, from 0.5 m Ω to $15m\Omega$
- 1.5 Wide range package size 1206/2010/2512
- 1.6 Tolerance: $\pm 1\%$, $\pm 2\%$, $\pm 5\%$

2. Part No. System

Part No. includes 14 codes shown as below:

2.1 1st~4th codes: Part name. E.g.: LR06, LR10, LR12

2.2 5th~6th codes: Power rating.

E.g.: W=Normal	Size	"1~	-G'' = ``1 - 1	6"						
Wattage	1/32	3/4	1/2	1/3	1/4	1/8	1/10	1/16	1/20	1
Normal Size	WH	07	W2	W3	W4	W8	WA	WG	WM	1W

If power rating is lower or equal than 1 watt, 5^{th} code would be "W" and 6^{th} code would be a number or letter. E.g.: WA=1/10W W4=1/4W

E.g.: WA=1/10WW4=1/4W2.3 7th code: Tolerance. E.g.: D= $\pm 0.5\%$ F= $\pm 1\%$ G= $\pm 2\%$ J= $\pm 5\%$ K= $\pm 10\%$

2.4 8th~11th codes: Resistance Value.

2.4.1 If value belongs to standard value of \geq 5% series, 8th code would be zero,9th~10th codes are significant figures of the resistance and 11th code is the power of ten.

2.4.2 If value belongs to standard value of $\leq 2\%$ series, $8^{th} \sim 10^{th}$ codes are significant figures of the resistance, and 11^{th} code is the power of ten. 2.4.3 11^{th} codes listed as following:

4=4000pcs 5=5000pcs C=10000pcs D=20000pcs E=15000pcs Chip Product: BD=B/B-20000pcs TC=T/R-10000pcs

2.5.3 14th code: Special features.

E = Environmental Protection, Lead Free, or Standard type.

3. <u>Ordering Procedure</u> (Example: LR12 2W ±1% 5mΩ T/R-2000)

2 W F Т 2 E L R 1 2 5 0 0 Ν **Resistance Value:** Wattage: Packing 5% series: 1W=1Wquantity: The 1st digit will be "0"; the 2nd 1A=1.5W & 3rd digits are for the significant 1=1000PCS 2W=2W figures of the resistance and the 2=2000PCS 2A=2.5W 4th digit indicate the numbers of 3=3000PCS 3W=3W zeros following. 4=4000PCS 0.5% \ 1% \ 2%series: 5=5000PCS The 1st to 3rd digits are for the Product Type: significant figures of the Fill-in 4 digits with the resistance and 4th digit denotes **Special Feature** chip resistor type as number of zeros following. follows: E= Lead-Free J=10⁻¹; K=10⁻²; L=10⁻³ LR06, LR10, LR12 $M=10^{-4}$; $N=10^{-5}$; $P=10^{-6}$ **Tolerance: Packing Type:** $F=\pm 1\%$ $G=\pm 2\%$ T=Tape/Reel J=±5%

4.1 Resistors

A. Resistance (Marking): Example :

Resistance	0.5mΩ	$1 m\Omega$	1.5mΩ	$2m\Omega$	$7 \mathrm{m}\Omega$	$10 \text{m}\Omega$
 Codes	M500	R001	1M50	R002	R007	R010

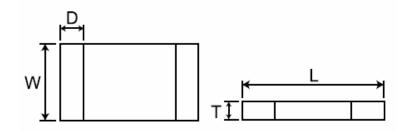
4.2 Labels

Label shall be marked with the following item

- A. Nominal Resistance
- B. Resistance Tolerance
- C. Power Rating
- D. Size
- E. Quantity
- F. Lot Number

Example :

5. Power rating and dimensions

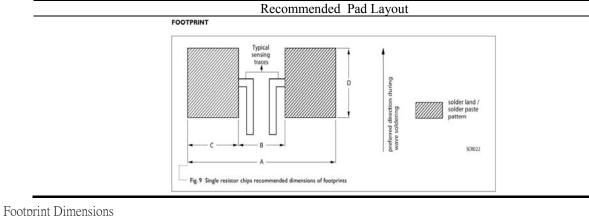

5.1 Power Rating :

UNIOHM Chip Resistors							
Resistance :	$1 m \Omega$	± 1%					
Wattage :	2W	Size : LR12					
Quantity :	2000 Pes.	50 PPM					
Part No.:							
Lot No. : 825723 LR1250F100NT2C							

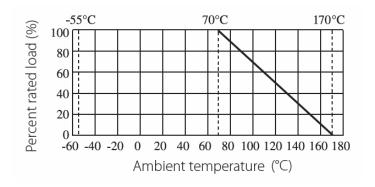
Label is 0R001, value is 0.001Ω , marking is R001

Туре	Power Rating at 70 °C	TCR (PPM/℃)	Resistance value (mΩ)	Standard Series	Color	Sodering	
Standard	·					•	
LR06	1W	± 200	0.5		Black	IR reflow	
(1206)	1 VV	± 50	$0.75 \sim 10$		DIACK	IKTEHOW	
		± 150	2, 5, 3				
1.0.10		± 100	4, 5, 10	E-96,E-24	Dissis	Wave or IR reflow	
LR12 (2512)	1W	± 75	6, 6.5, 7		Black	wave of IR reflow	
(2312)		± 50	0.5, 0.75, 1, 1.5, 2				
		± 50	11,12,13,14,15		Green	IR reflow	
High Power	Rating					•	
LR10	1.5W	± 200	0.5		Black	IR reflow	
(2010)	1.5 W	± 50	$0.75 \sim 10$		Васк	IK fellow	
		± 150	2,3,5				
		± 100	4, 5, 10		Black		
	2W	± 75	6, 6.5, 7	E-96,E-24	DIACK	Wave or IR reflow	
LR12		± 50	0.5, 0.75, 1, 1.5, 2	E 70,E 21			
(2512)		± 50	6.5,7,8,9,10	_	Green		
	2.5W	± 50	4,4.5,5,6				
	3W	± 100	0.5,0.75		Green	IR reflow	
	5 44	± 50	1, 1.5, 2,3				

5.2 Dimension :



Tarras	Power Rating		Dimens	sion (mm)	
Туре	at 70 °C	L	W	Т	D
Standard					
LR06 (1206)	1W	3.20 ± 0.254	1.60 ± 0.104	0.60 ± 0.20	0.980 ± 0.380
LR12 (2512) 1W		6.35 ± 0.254	3.18 ± 0.254	Depends on value	Depends on value
High Power Ratin	g				
LR10 (2010)	1.5W	5.08 ± 0.254	2.54 ± 0.15	0.60 ± 0.20	1.665 ± 0.625
LR12 (2512)	2W 2.5W 3W	6.35 ± 0.254	3.18 ± 0.254	Depends on value	Depends on value


6. <u>Recommend the size of welding plate</u>

	Size	Resistance Range	А	В	С	D
LRO		$1m \Omega \leq R \leq 50m \Omega$	3.9	0.76	1.57	1.78
_		$0.5m\Omega \leqslant \!$	7.37	1.27	3.05	3.68
	LR12	$5m \Omega \leqslant R \leqslant 6m \Omega$	7.4	3.18	2.11	3.68
		$7m\Omega \leqslant R \leqslant 100m\Omega$	7.36	4.06	1.65	3.68

7. Derating Curve

Resistors shall have a power rating based on continuous load operation at an ambient temperature of 70 $^{\circ}$ C. For temperature in excess of 70 $^{\circ}$ C , The load shall be derate as shown in figure 1. Figure 1

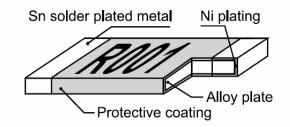
7.1 Voltage Rating:

Resistors shall have a rated direct-current (DC) continuous working voltage or an approximate Sine - wave root-mean-square (RMS) alternatingcurrent (AC) continuous working voltage at commercial-line frequency and waveform corresponding to the power rating, as determined from the following formula :

$$RCWV = \sqrt{P \times R}$$

Where : RCWV = Rated DC or RMS AC continuous working voltage at commercial-line frequency and waveform (volt) P = Power Rating (watt)

R = Nominal Resistance (ohm)


In no case shall the rated DC or RMS AC continuous working voltage be greater than the applicable maximum value.

6.2 Nominal Resistance

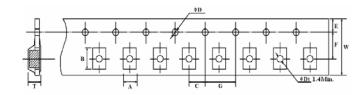
Effective figures of nominal resistance shall be in accordance with E-24, E-96

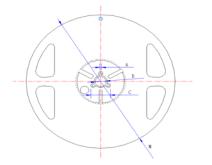
E-96 for 1 %, E-24 series for 2%, 5%.

8. <u>Structure</u>

Black coating - Wave or IR reflow soldering

9. <u>Performance Specification</u>


Characteristic	Limits	Test Method (GB/T5729&JIS-C-5201&IEC60115)			
Temperature Coefficient	Refer to item 5.	$\begin{array}{c} \text{4.8 Natural resistance changes per temp. Degree centigrade} \\ \hline R_2 - R_1 \\ \hline R_1(t_2 - t_1) \\ \hline R_1(t_2 - t_1) \\ \hline R_1: \text{ Resistance Value at room temperature } (t_1); \\ R_2: \text{ Resistance Value at upper limit temperature } \pm 2^{\circ} C (t_2) \\ R_3: \text{ Resistance Value at lower limit temperature } \pm 3^{\circ} C (t_3) \\ \hline \text{Test pattern }: \text{ Room temperature } : (t_1) \\ \hline \text{Upper limit temperature } : (t_2) \\ \hline \text{Lower limit temperature } : (t_3) \\ \end{array}$			
Short-time overload	Black coating:±0.5% Max Green coating:±1% Max	4.13 Permanent resistance change after the application of a potential of 2.5 times RCWV or Max. Overload Voltage whichever less for 5 seconds			
Soldering Heat	Black coating:±0.5% Max Green coating:±1% Max	Dip the resistor into a solder bath having a temperature of $260^{\circ}C \pm 5^{\circ}C$ and hold it for 10 ± 1 seconds			
	95% coverage Min.	Wave solder: Test temperature of solder: 245°C±3°C dipping time in solder: 2-3 seconds.			
Solderability	Go up tin rate bigger than half of end pole	$\begin{array}{c c} Reflow: \\ \hline \\ 250 \\ 200 \\ 150 \\ 150 \\ 50 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $			


Rapid change of temperature	$\pm (1\% + 0.1\Omega)$ Max.	4.19 30 min at lower limit temperature and 30 min at upper limit temperature , 5 cycles.
Load life	$\pm (1\% + 0.1\Omega)$ Max.	4.25.1 Permanent resistance change after 1,000 hours operating at RCWV with duty cycle 1.5 hours "ON", 0.5 hour "OFF" at 70 °C ± 2 °C ambient.
Low Temperature Storage	$\pm (1\% + 0.1\Omega)$ Max.	4.23.4 Lower limit temperature , for 2H.
High Temperature Exposure	$\pm (1\% + 0.1\Omega)$ Max.	4.23.2 Upper limit temperature , for 16H.
Leaching	No visible damage	J-STD-002 Test D Samples completely immersed for 30 sec in solder bath at 260°C

10. <u>Packing of Surface Mount Resistors</u> 10.1 Dimension of Paper Taping :(Unit: mm)

Туре	A ± 0.1	B ± 0.1	C ± 0.05	$\substack{\psi D\\\pm0.05}$	E ± 0.1	F ± 0.05	G ± 0.1	W ± 0.1	$\begin{array}{c} T \\ \pm 0.1 \end{array}$
LR06	1.90	3.6	2.0	1.55	1.75	3.5	4.0	8.0	0.87
LR10	2.85	5.55	2.0	1.55	1.75	5.5	4.0	12.0	0.85
LR12	3.40	6.73	2.0	1.55	1.75	5.5	4.0	12.0	0.81

10.2 Dimension of Reel : (Unit: mm)

Туре	Packaging	Quantity Per Reel
LR06	Embossed	2,000 pcs.
 LR10	Embossed	2,000 pcs.
 LR12	Embossed	2,000 pcs.

11. <u>Note</u>

11.1 UNI-ROYAL recommend the storage condition temperature: 15°C~35°C, humidity :25%~75%. (Put condition for individual product).

Even under UNI-ROYAL recommended storage condition, solderability of products over 1 year old. (Put condition for each product) may be degraded.

11.2 Store / transport cartons in the correct direction, which is indicated on a carton as a symbol.

Otherwise bent leads may occur due to excessive stress applied when dropping of a carton.

11.3 Product performance and soldered connections may deteriorate if the products are stored in the following places:

- a. Storage in high Electrostatic.
- b. Storage in direct sunshine, rain and snow or condensation.
- c. Where the products are exposed to sea winds or corrosive gases, including Cl₂, H₂S₃ NH₃, SO₂, NO₂.

12. <u>Record</u>

Version	Description of amendment	Page	Date	Amended by	Checked by
1	First issue of this specification	1~7	Mar.20, 2018	Chen Haiyan	Chen Nana

Uniroyal Electronics Global Co., Ltd., all rights reserved. Spec. herein would be changed at any time without prior notice.